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Linear functional.differentisal equations vith constart coefficients.

cack K. Bale

I. Introduction. Until recently, most of the results concerning

differentinl-difference equations have been obtained by treating the
dependent variable as a point in Euclidean space and employing arguments
which are standard in the theory of ordimary differential equations.

To the author's knowledge, Krasovskii [ 9] was the first to exploit

the idea that the proper setting for these problems is in a function
space. In doing so, the arguments used for ordinary differential equa-
tions become more natural for differential-difference equations. The
present paper is an attempt to obtain some analogies between linear
differential-.difference equations with constant coefficients and
ordinary linear differential equations with constant coefficients.

Mor: specifically, we discuss in detail the eigenspaces of the
linear equation and then make use of the adjoint equatia.. to introduce
new coordinates in the function space which exhibit in a patural manne:r
the behavior of the solutionson an eigenspace and the behavior of the
solutions on a coamplementary space. In this manner, it is shown in
section IV how many of the usual perturbation theorems in ordinary
differential equations can be easily extended to differential-difference
equations. The basic idea for discussing the prcblems in this manner is
contained in the papere of Shimanov (see the biblicgrephy) and the present
paper originated from an attempt to understand the geometric significance
of Shimanov's results. This approach should lead to a better understanding

of much of the geometric theory of differential-difference equations. The



author is indebted to John Steulpnagel and Arnold Stokes for many
fruitful discussions.

The following notation will be used throughout this paper. R-
is the linear svace of n-vectors amd for x € Rn, le is any vector
norm. For any given pumbers a, B, a 5 8, C([a, B], R°) will denocte
the space of continuous functions mepping the interval [a, B] into R"

n

and for o0 € C([a, Bl, R ), o/l = sw |p(6)]. Forany r z 0,
a=0:s=p

any continuous function x(u) defined on -r s usA, A >0, and any

fixed t, O St s A, we shall let the symbol x,

€ C(la, B, R") and is

denote the function
xt(e) =x(t +09), -rses0; that is, X,
that "segment" of the function x(u) defined by letting u range in
the interval t -rsus=t.

Let X(p, t) € R* be a function defined for all ¢ e C([-r,0], R%),
loll =8, B >0, te [0,). Let x(t) denote the right hand derivative

of a function x(u) at u=1t, and consider the functional-differential

equation

(1.1) x(t) = X(x,, t).

Definition I.1l. Ilet t‘o be any given number 2 0 and let

¢ € ¢([-r, 0], R"), |ioll s H, be any given function. A function xt(to, ?)

is said to be a solution of (1.1) with initial function ¢ at t  if there

i8 a number A > 0 such that

1) for each t, tostst +A x (¢, @) 1s defined,

N
belongs to C([-r, 0], R®) and ult(to, Py € H;



11) xto(to, ®) = 9;

111) x(to, ¢) satisfies (1.1) for t, 3t st +A

If t, 1is equal to zero, we shall abbreviate x(to, ®) by
x(¢). If X(p, t) 1is continuous in ¢, t and Lipschitzian in ¢, it
is easy to prove that (1.1) always bas a solution and for each @ there
is only one solution. Furthermore, it is also easy to prove that
x(t_,, @) depends continucusly on @.

By a linear functional-differential equation with constant coeffi-

cients, we mean a system (1.1) where X(p, t) = £(¢) is homogeneous and
additive in @. It is well known [15, p. 110] that £(p) continuous on
¢([-r, O], R") implies there is a matrix n(68) whose elements are of

bounded variation such that
0
£(e) = [ [an(6) k(6),
I

for all @ € C([-r, 0], R®), where the integral is in the sense of StieltJjes.
This obeervation mekes it obvious that the concept of linear functioml-
differential equation with constant coefficients includes all linear

differentinl-difference equations with constant coefficients of the form

P
i(t) = Z X(t -T ) T. 2 0.
Z A x)r Tx
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II. Basic properties of linear systems with constant coefficients. A

linear functional-differential equation with constant coefficients is

any equation of the form
(2.1) x(t) = £(x,)

vhere f 1is a continuous linear function mapping C([-r, 0], R°) into
R". Yor any such function f£(9), it is well known (see [15, p. 110])
that there exists an n x n matrix n(@), - r s 6 s 0, whose elements

have bounded variation such that

C
(2.2) £(9) =/ {dn(e)le(a).
-r

If ¢ is any given function in C([-r, o], R") and x{(p) is the
solution of (2.1) with the initial function ¢ at zero, we define the
operator T(t) mapping C([-r, O], R") into C([-r, 0], R®) by the

relation
(2.3) x, () = J(t)9,

vhere, for each fixed t 20, x (9) is the function in c([-r, 0], R")

determined by the relation xt(cp)(e) = x(p)(t +6), ~-r=s90s0.

Lemms II.1l. The operator J(t), t 20, defined on C([-r, 0], R")

by (2.3) satisfies the following properties.
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1) 7(1:) is a bounded linear operator for each t z O;

11) ,.7 (t) 1is strongly continuous on [0, »); that is

J(@©) =1 and

un N TG - T(ehwll = o,

forall t 20, @€ ¢([-r, 0], R%);

111) The family of transformations (J(t), t # 0} 1s a semigroup,

that 1is,

J(t +1) =j(t)7(1’), forall t 20, T 2 0;

iv) .7 (t) 1s completely continuous (compact) for t 2 r; tkat

is, \7 (t), t 2 r maps closed bounded sets into compact sets.

Proof: 1) It is obvious that j(t) is linear. Since f(9) is con-
tinuous and linear, it follows that there is a constant L such that
i2(®)| s Lol for all @. From the definition of /(t), we bhave, for

any fixed t

sj(t)q’(e) = Q)(t o 9); t+6=0,

(2.4) +6

t
TJ(t)e(e) =o(0) + f £(J(v)p)ar, t +8>0, -r 5 6 80.
0

Since |f(9)| & Lilpll, 1t follows that

I Jt)oll s eXloll, t 20, ®ec(l-r, 0], RY),

and j(t) is bounded.



-6 -

11) Prom 1), it follows that ./(t) 1s comtinuous for all

t 2 0 and, from the definition of J(t), J(0) = I. This proves 1i).
111) This is immediate from the definition.

iv) To prove iv), we observe that if S = (¢ € C([-r, 0], R%)| Il s R}

than

J #)8C 8, = {v e ¢({-r, 0], B%) |¥ € c([-r,0],R"), lvll s e**R,
Wl s e%R)

for t & r. Since 8, is compact and J (t) 1is continuous, the result

follows. This completes the proof of Iemma II.l.

For any semigroup of transformations T (t), t #0, of a Banach
space B 1into itself, the infinitesimal generator 4 ot J (t) 1s de-

fined by the relation

aq>=limt

r HT(t)e - o]
for every value of ¢ for vhich this limit exists. The limit of course
signifies convergence in the norm of '6 .

For any operator \7 of a Banach space ﬁ into itself, the resolvent
set p(7) of ~7 is the set of values ) 1in the complex plane for which
the operator Al =- \7 has an inverse which is defined for all ¢ in ‘ﬁ .
The complement of p(J) 1in the complex plane is called the spectrum of 8;
and 13 denoted by a(\7 ). The spectrum u(g ) of an operator consists

of three different types of points, namely the residual spectrum RU(J),

the continuous spectrum CU(J), and the point spectrum PU’(J). The

residual spectrum consiste of those values of A in c(m for which
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A - J exists but the domain ﬁ(u It ot 01 -T) 7t s not
dense in 'ﬂ . The continuous spectrum consists of those ) in of 77)
for which ogfu -\7 )';L i dense in \ﬁand vhe point spectrum consists
of those values of )\ for I - -7 does not have an inverse. The points
A in PU(J ) are sometimes called the eigenvalues of <\7 and any non-
zero ¢ such that (AI - ’r)¢ =0 is called an eigenvector.

One of our first objectives is to try to determine the nature of
0'(.7(1'.)) and 0(4) for the family of operators which arise in our
particular problem and to analyze in what sense the operator 1.7 (t) 1s
approximated by the operator edt provided this latter object makes
sense. For the simple cese in which system (1) is an ordinary differential
equation; that is, f£(p) = Ap(0) for some constant matrix A, the

A' and the infinitesimal generator /{ of J(t)

operator J (t) 1s e
is equal to the matrix A. The following results show that analogous
results are valid for the more general system (2.1).

The following lemma is a restatement of Theorem 10.3.1 and 10.3.3 of

Hille and Phillips [ 8 ] for our part:cular case.

Lemma II.2. If \7(t), t 20, 1is a strongly continuous semigroup of
operators mepping C([-r, 0], K®) into C([-r, 0], R"), then the domain
L) of the infinitesiml generator 78 \7(1’.) is dense in

¢([-r, 0}, R") and the range ﬁ(m of dis tn ¢([-r, 0], R®). For

all 9 1n N,
(2.5) & Jww = Jw)de = S iv)e.
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We nowv derive a specific formula for the infinitesimal generator d
in terms of the system (2.1). Since x() satisfies (2.1), it follows
from the definition of J(t) that J(t)p satisfies relation (2.4).

Consequently, forany 0, -r 2 <0,

S (C CUORLOIEE o

Ir 9=0, then

t
lm l(At)0)(0) - 9(0)] = lim . X[ [ £(x )ar]
o TR - 9(0)] = 1m TS r(x)es

0
= 2(x ) = 2(9) = [ [dn(6) Jo(6).
-

But, to say that

4@ = limt " %[J(t)w - ¢]

-
implies convergence in the norm in C([-r, 0], R"), which implies uniform
convergence ans thus Z{q: must be a continuous function which implies

4@(0) = £(p) = dp(0)/d6. Summarizing these remarks, we have the follow-

ing lemma.

lemma II.3. If \7(1:), t 20 1s the family of transformations on

C(l-r, 0], R®) defined by (2.3), then the infinitesimal generator of
(j(t)] is given by

ap(0)

%5 -hseso

¢(6) = 0
9%91 = [ lan(e) Jp(e) = £(9).
=T
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We nov take some results from Hille and Phiilips and Reiez-Nagy
and apply them to cur family of operators :7 (t) satisfying properties

i) = iv) of Lemma II.1 to obtain the following results.

Lemma II.4. For t 2r, o(\7(t)) 13 a countable set and is a compact
set of the complex plane. The only possible point of acrumulation of
o(J(t), is (0} amdif w40, u in o(J(t)), then u 1s in

Po(J(t)). (Hille and Pnillips [8, pp. 180-182], Theorems 5.7.1, 5.7.3]).

Given any operator :7 , we denote by ot (J) the null space of

77 : tbat is, the set of all @ such that ZF o = 0.

lemm II.5. For t 2r, if u=p(t) 18 in Po(J(t)), u £0O, then for
each positive integer k, J€ (uI - J (t)X 1s of finite dimension for

every k, and there exists a least integer n_ such that
o

Y€ - TenX = 2Pux - J(£))! foranl kx, 1z n,.

If 'Z)Z:*(J(t)) 18 equal to J¥ (uI - \7(t))n°, then

J &) (T(0) C BT (4

(Hille and Phillips [8, p. 182, Theorem 5.7.3])

Lemm II.6. For t zr, Pof J(t)) = exp[tPa((])] plus possibly {0}.
More specifically, if u = u(t) 1s in Po(J(t)) for some fixed t and
uw £0, then there is a point A 1in Po(( ) such that M . pe Further-

more, 1f (A} consists of all distinct points in Po({) such that
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At
e = u, then Jf(ul - .7(1'.))k is the linear extension of the linear

independent manifolds [J{()hl - d)k}. (Hille and Phillips [8, p. 467,
Theorem 16.7.2 and pp. 321-32k, Theorem 10.6.5]).

In the following, 2?2’ X(B) for any operator B on a Banmach space
ard A in Pg(B) will denote the maximsl subspace of ré} annihilated by

powers of B - Al

Lemma IT.7. If 4 is the infinitesimal generator of the family of operators
defined by (2.3) and A is in Po({ ), then the set J?}"x(ﬂ) in

¢([-r, 0], R") 1s finite dimensioml. Furthermore, there is a real number
B such that Re(A) s p for all A in Po({), and there are a finite
number of A 1n Pa(d) such that y = Re A for any given real number

T

This lemma is an immediate consequence of Iermes II.4 - II.6.

Ilemma II.6 above gives a very distinctive relationship between the
point spectrum of j (t) and the point spectrum of d . In fact, except
for the poimt y =0, Po(J(t)) is completcly determined by Po({). We
now derive an expiicit expression for Po({). If A is in Pg({), then

there must exist a nonzero @ in C([-r, 0], R") such that

Ae = ™.
This last relation 1s satisfied if and only if

%ﬂ=w(e), -rs6s0

0
®00) _ 1 [an(e) (o),
=X
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vhich in turn implies (8) = e*®, -r s 950, and the vector b

satisfies

A(Mb =0
(2.6)

0
A(N) = (M - [ [an(6)1e*®).

-

As a result of this fact and Lemma II.7, we have

lemm IT.8. Po(//) = {A]| det A(A) = 0}. The roots of the characteristic

equation of (2.1), det A(A) = O, have real parts bounded above and there

are only a finite number with real parts greater than a given constant.

The characteristic equation of (2.1) can be obtained in a very
straightforward manner as in ordinary differential equations by determining
necessary and sufficient conditions that the equation (2.1) has a soclution
of the form x(t) = ey for some A, b. Many procedures have been given
to analyze the nature of the roots of the characteristic equation (see,
for example, langer [11], Pontrjagin [14], Pinney [13]). The property
of the roots mentioned in Ieama II.S is also in these papers.

Before proceeding to an analysis of the specific structure of the
solutions of (2.1), we wish to derive a result concerning the maximum

rate of growth of the solutions of (2.1). For later reference, we etate

the result independently of solutions of (2.1). If 7 is a bounded linear

transformation of a Banach space into itself, the spectral radius p 7. of
\7 is the smallest closed disk with center at the origin in the complex
plane which contains o(J ). The following lemma is taken from Reisz-Nagy

15, p. 425].
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leam II.9. If ~/ 18 a bounded linear transformation of a Banach space

into itself, then the spectral radius ‘cs\‘7 of ] is given by

- n l/n.
oy = Um _.-»M i

Theorem II.l. If j(t), t 20, 18 a strongly continuous semigroup of

operators of & Banach space 79 into itself, if for some r >0, the

spectral radfus p = Pxr) is finite and # O and Br = 10g p, then, for

eny 1y >0, there is a constant K(y) 2 1 such that

1T el s x(r)e BT ol forait tz0, ¢ 1n O

Proof: This proof is essentially the same one as contained in Stokes

[19]. Bince p is finite, the mmber B is well defined. From Lemma II.9,

e’ = lm NJn(r)lll/n, and thus, for any 71 > 0,

n—-o

S Rl VAT

n->

Therefore, there exists a number N such that

(BT 2 (e 4 e )"

vhere e 7' + € $K<1 forall nzN. Consequently, e'(W)mlen(r)ll -0
as n -»», Since J(t) is continuous for all t & 0, there is a con-
stant B such that || J(t)| S B for O st s r. Define K(y) for any

Yy >0 to be
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K(r) = max( max B (Pt pay  pes(BM)Ery g
Ostsr nz0

If 0=t =r, then, for any ¢ mﬁ,

iJ el s 1T®) - lell s Bloll s k(r)e Pt

If t 2r, then there is an integer n such that nr s t < (n+lr),

and, for all ¢ in ﬂ,

1Tl = 17t - nr)e (nr)ell s Ble/"(x)]- o]l =

[Be'(ﬁ"’f) (t-nr)e-(ﬁ-rr)nr“j Bl ]e(&w)tlb”
s k(r)e PP ¥g|.

This completes the proof of the theorem.

Coyollary II.l. If A(A) 1s defined as in (2.7) and all the roots of
the characteristic equation det A(A) = 0 satisfy Re A s 8, then for
any v % 0, there exists a constant K(y) 2 1 such that if x(@) is the
solution of (2.1) with initial function @ in C([-r, 0], R") at zero,

then

Ix, @)1l s k(r)e PPl ¢z 0.

In particular, if B <0, then all solutions of (2.1) approach zero

exponentially as t - =,

Proof: If «f (t) is defined as in (2.3), then p = 0 7(r) 18 fintte and = exp pr
from Iemmas II.6 and II.8 if p ¥ 0. This case follows from Theorem II.1l.

If p =0, the corollary is obviously true.
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Corollary II.1l is well known in the literature (see for example,
Krasovskii [ 9], Bellman and Coocke [ 1], Stokes [19]).

In the following, we shall always assume that \7(1;) is the family
of operators assoclated with system (2.1) and 4 is the infinitesimal
generator of J(t)

From Lemm II.7, 1f A 1s in Po{), then YEor -¢)F 1s of

finite dimension for every integer k and there is an integer n, such

that M(XI --d)k = J((u -(Z)no for all k zn_ . Since
mﬂx([() =dr(({ - .\I)n° has finite dimension, say d, there exists a

esis @), ..., @y OF mx(q). Furthermore, since[(/)n,k(d)c 37[’)'(&),
there exists & d x & constant matrix B (whose only eigenvalue is )

such that
/(®=¢B, @:row(cpl, cee, q;d).

Now, let us investigate the nature of the solutions of (2.1) given by

&7 (t)¢. From Lemma II.2,
& Tl = Jeydo - Jtyes

and, thus,

e = e,

Consequently, we have the following result.

Theorem II.2. Ilet ~7(t) , t 20, be the strongly continuous semigroup

of operators defined by (2.3) and let (( be the infinitesimal generator
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of /J(t). Suppose A 18 in Pg({) amd let o = row(®,, «ev, By)

be a basis for mx(ﬂ), the maximal subspace of C([-r,0], R") anni-
hilated by powers of A\l - 4 . If a 1is an arbitrary constant column
vector of dimension d, then \7 (t)ea = 9P for some constant matrix
B with all of its eigenvaelues equal to A. If u = u(t) #0 1s in

Po(j(t) for some t, and (A,, ..., ).p} is the set of distinct ele-

1’

At

ments in Po(d) such that e" =y, and 0 = (¢, ..., q»p), vhere

#. is a besis for Wx (({), of dimension 4, then, for any

J J

QGM);(j(t)), there exists & vector a of dimension d =4, + ... +dP

such that ¢ = ¢a and

(2.7) J (e =0 e™a

vhere B 1s a d x d matrix given by B = diag (B}, ..., Bp) vhere
each B, 1is defined by 403 = ¢,B,.

The first part of this theorem has been proved above and the second
part follows by using the same argument together with lemma II.6.

Theorem II.2 shows that on the subspace %U(t))’ the functiomal.-
differential equation (2.1) has the same structure as an ordinary linear
differential with constant coefficients. Of course, the dimension of
the matrix B in (2.7) may have nothing to do with the dimension of
system (2.1) since the dimension of B is determined by the multiplicity
of the eigenvalue u(t) of :7 (t). Notice also that the multiplicity of
this eigenvalue may change with t. 1In fact, this is easily illustraticd
by an ordinary equation

2ri O

i‘u, Az(o-m)c
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Then ;7(t) =™ ana Po(J (t)) = (ez'rit, e 2"“’). For t=n an
integer, Po(y(n) = (1} and, otherwise, consists of two distinct points.
On the other band, the multiplicity of the points in Pg(({) do not

change and one can always define the set %(4) to generate solutions
of (2.1).
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III. The adjoint equation and a change of coordimates. In this section,

we wish to show how one can introduce a change of coordinates in the
space C([-r, 0], R”) 1in such a way as to exhibit in a natural manner
any particular eigenspace W).(d) associated with system (2.1). More
specifically, we show that it is possible to transform system (2.1) to

an equivalent system which consists of a set cf ordinary differentisl
equations (whose solutions describe the behavior of \7(1:) on the eigen-
space Jfr x(d)) together with an operator equation (whose solutions
describe the behavior of \7(1'.) on a space complementary to Wx(d ).
To do this, we make use of the equation "adjoint" to (2.1). is concept
s been used in functional-differential equations by many authors (see,
for example, de Bruijn [ 4], Bellman and Cooke [2 ], Hahn [5 ],

Balanay [ 6] and Shimanov [17,18]) The author has beer influenced by all
of these authors, but especially by Shimanov.

Consider the equation

0
(3.1) x(t) = [ [an(e)Ix(t +8), t 20
-
and its formal "ad joint"
0
(3.2) y(8) =~ J [dn (8)ly(s - 98), 850
-r

where x, y are n.vectors and the symbol BT always denotes the¢ transpose
of a matrix B. The term adjoint is justified by the following observa-

0
tion. If we let Ix(t) =x(t) - f [dn(e)lx(t + 9),
0 -r
L*y(s) = ¥(8) + [ [qu (6)ly(s - 9) be operators defined on differentiable
-r
functions, then
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y© (£)(1x)(t) + [(zay)(t) x(t) =

a. T 0 6&np
BT (a0 - 1 [T (et - o)en(o)x(t + )

r
The expression on the right hand side of this equation will play an im-
portant role in the following discussion and, thus, we give it a special
desigmation. For any @ € C([-r, 0], R°), ¥e ¢([0, rl, R"), we define
the symbol (¥, @) by the relation

0 6
(3.3) (¥, 9) = ¥ (0)9(0) - IOvT (£-6) [an(6) Jo(t)at.

r

For the solution x(¢) of (3.1) with initial value ¢ in
c([-r, 0], R®) at zero, we have slready defined the operator .Y(t),

t 20, by the relation x.(o) = J(t)p and the infinitesimal generator

/{ of \7(1'.) vas

(3.4) o(8) = (4»(9), -rsgso
0
?«b(O) = [ [dn(e) Jo(e).
-r

If v 18 in c([0, ri, R°), then system (3.2) has a solution y(¥)
with initial function ¥ at zero and defined for all s s r. If we

let y'(v)(e)g‘y(v)(s +9), 0s9sr, s =0, then the operator
,7*(3), 8 0, defined by ye(v) =(7 #(s)y bas all of the same pro-
perties as \7 (*). The infinitesimal generstor 4{ of .7*(3) 18 de-

fined by

41‘* = lm % [J*(2)¥ - ¥1.

8 07
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For later purposes, it is convenient to define an operator d * on

c({0, rl, R") 1in such a way that 4* = - di A direct calculation
shows that

-¥e), Osesr

.59 Awey =T . o 4
- ¥(0) = [ [an" (6) ¥(-0).

-r

It is also easy to verify that ;7*(3) and /(* satisfy the

following relationship:

(3.6) i—‘Z—Biﬂl - o Jxe) = - Jre Y% s so.

Tt is obvious that x(t), y(t) continuously differentiable

n-vector functions and x., y, defined by xt(e) = x(t + 9),

v,(6) =y(t -6), -hs6%0, implies

S 1) iy x) + (v ),

where 5’1»,(9) = dy(t - 0)/dt = y(t - 6), :':t(e) = dx(t + 0)/de = x(t + ),
-hsgsO.

lemma III.1. (¥, 40) = (%4, @ forall o i L, v

L.
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i

0 0
(v 4 ) =¥E (0)(0) - f [ W' (& - 8)[an(e) M(e)ds
¢ ~r QO

0
= ¥" (08(0) - f T (& - o)(an()o() 1

-

0 0 8 T
= ¥ (-a)(an(e))g(o) + [ § L& =014, 05)l0(k)ar

r -r O

0 6 T
= -7 (0)(0) - § [ - D LE=0)jpio)p(e)ar

-r O g
= (((**: ‘P)

as was to be shown.,

Lemma ITI.2. If T 2 O 1is any given constant and @ € c([-r, O], Rn),

ve c(lt, T +r], RY), then

C{?*(t - T)¥, F (t)p) = constant for 0 st s 1.

*
Proof: From the properties of J and \7, it follows from lemma III.1

that
LT e, T = (T ey, Jow) + (FHeow, ATe) = o.

lemma III.3. If A # u then for any nonnegative integers X, |,

ve X - w0, am g e WA -An™ tupites

; * K- .
(A" -0y, (d-a)* %) =0, ospsk 0sqsy
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0. We wish to show that

]

Proof: We always suppose \ # u. Buppose Xk

that for any nonnegative integer (¢ wund &ny q, 0 2q = ¢,

(3.7) ¥, (- x1)*%) =

o

*
We prove this by induction on §. If ¢ =0, thenm q =0 and d ¥V = uv,

({ @ = M wvhich implies
% Jo) =r% @) = (¥, 9) = (¥, @)

and thus (¥, @) = 0. If we suppose (3.7) has been proven for 0 $ f Sy =1,

then for ¥ eJ¥({" - u1), (- )% e T Q- W)™, the tnduction

hypothesies implies

(3.8) v, (d-»)"%) =0 for 0sqsy-L1.

Furthermore, for q =7 - 1,

0= (¥ ({ -39) = ¥, 8) + (¥, ®) = (A +p)(¥, 9

vhich implies (¥, ®) = 0. But this is (3.8) for q = y. Consequently,
relation (3.7) is trwe.
Now let us suppose the conditions of the lemma are satisfied for

all k =y -1 and all integers (. We wish tc show this is true for

k =y. Since for k=71 andany |, V€ ﬂp(q" - uI)k+l, P € ”(4-11)”1
* - * 1 ! +1

mpttes (" - un) Py X" - wDP, (D% TG A0

for Osps=y, O0sq=1{¢, the induction hypothesis impiles that

(3.9) ((0\* o “I)T-P% (441)‘%) =0, 0$psya-1 0sqs|{.
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It remeins to shcw these relations are true for p = yv; that is,

(3.10) v, (20" %) =0, 0saqs1

let us first show that (v, (({ -\I)%9) = 0. We know from (3.9) that

0= (" - w0, (A-20)%) = (% (A 4D ( D' = (), (q 2))
since ({ (({ A1) = A( { AI)%. This is the desired relation. Con-

sequently, (3.10) 18 true for q = 0. Suppose (3.10) bas been shown to

be true for all q $ 1 - 1. From (3.9),
0= (" 0w, (AD*) = (v, (A1 + D ({ADT ) =
= (6 ([P N) + (- (XA

= (x =W ([ A T)

by the induction hypothesis. Consequently, (¥, (d-u)l'nq)) =0 and

(3.10) 1s valid for all q. This completes the proof of the iemma.

Corollary TI.1. 1 ¥ < Y ("), @ W (), then (¥, 9) = O
£ S N T

Proof: Take p =k, qQ ={ in the above lemma.
»
lemma III. 4. If tea’f(d - AI), then for all Qe.@f&)

(v, ({ A1)9) = 0;
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that is, J{(((* - AI) is orthogonal tc the range, ?ﬁ( JC ~A\I), of
/( -AI, the orthogonality being with respect to the symbol (v, @).

1t 9e I (1), thentorall ye (A,

(A" -2y, 9) =o0.

Procf: This is an immediate consequence of ILemma III.l.

lemma IIT.5. A 1is in Pa(d) if a only if A is in Pa(((’)o

Proof: A 18 in Po(¢({) if and only if det A(A) =0 where A(A) is

defined in (2.6). A 1s in Po(({") 1if and only if
¥(e) = e™%

and b 18 a nonzero solution of the equation,
0
I - [ [ag® (8)1e*® b = AT (A)p = 0,
~T
or if and only 1f det AT () = 0. But det AT (A) = det A(A) and the
lemma is proved.
lemma ITI.1, Corollary III.l, Lemma III.4 and Lemma III.5 indicate

thet the operators { ana {* are 1n scme sense adjoint to each other;
maely, (v, ({®) = (A*¥, 9), (" and ({ bave the same point spectru:,
Mu(/(*) 18 orthogonsl to 3]‘(;(4) 1t A fu and IC(A" -21) 1e
orthogonal to A(({ - AI). If we could show that Wx([() and

Mk(d*) have tbe same dimension and the matrix formed by (tJ, qak),
nonsi ar,

where the V¥,, @ ave bases for M(J ) )Wi(d ), respectively, is/ then there is
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almost a complete similarity with the usual concept of adjoint. The

next results are a precise statement of these remarks.

Iemm ITI.6. If A 18 in Po((/), then the dimensions of 0‘7?’(4)

and W([l ) are equal, W(ﬂ*) Wt -k, JJZIX(/ = (A1),
for some k with JO(L* - Ak # (A - Ay,

JE (- D £ XA -5 12 9 eWX(d), then & necessary and

sufficient condition that o € X ((7 - A1)* 1is tmat
(¥, ) =0 forall ye W(((* - u)k.

Proof: First, we introduce some notation. With the matrix A(\) defined

in (2.6), we define matrices PJ(L) as

J
A——u ) A(‘])(k) = -d-j—- @), =012, ...

Pyyr(d) = o

and the matrix A, of dimension (kn)x(kn) as

E P, Py
Ag=10 51 P

, 0 0 P,
L. -

let g = col (akl’ vee, akk)’ B, = col ':Bkl’ ceny Bkk)’ whe re
each Q 42 ﬁkj is an n x p matrix, be bascs for T((A.k), S (A,:),

respectively.
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Suppose @ € ﬁ( ((- ).I)k. Then it is easy to show that

k-1

<
@(9) = I T —
4=0 J¥l 3!

Y]

vhere AT =0, 7 =col (rl, oo rk); that is, the vector y must
belong to the null space of Ak Consequently, a basis Ok for
Zf( (( - )»I)k can be written as

k=l QJ xe

*
In the same way, one shows that a basis ¥ for Jf(d - )..I)k can be

written as

= (-6)Y _-r6
k(e)_ zakkd e -

These remarks prove that the dimensions of mﬂ(d - J\I)k and M(@ - ).I)k
are the same for every value of k and the first part of Lemma III.6

follows immediately.

Now, suppose that o € N( (Z- ).I)' and vy € N.(a* =

Then ¥(8) = yk(e)b, #6) = al(e)a, for same constant vectors

b,a, and
T O 8 p
(V@) =b ¥, (ow (0)a - [ fob Y (;-e)d'x(e)w (8)a dt
-r
T T k=1 g=-1 1 A6 _ 1]
=v [y, (0)e,(0) - 15;0 J:O By k. 1(f £%n(e) fo '(I?!"%zrg_d‘)“:,ﬁl]a

k-1 g-1 0 i+J+l

T T
By - 1§0 JiO ﬂk -y f Zi+,j+ 1)t eMan(e))a a Jﬂ]a-



Consequently,
, k-1 g-1 T
11 =b Lz P a la =9%b = ¢ a.
(5 ) (*} ¢) Li£ J=0 Bk‘.k—i 1+J+2 ‘,J.'.l } v k b4 ¢ Qz

For any @ € ﬂ( 4 - xI)l, we wish to derive necessary and suffi-
cient conditions that ¢ € 7(?(2,- xI)k; that is, there exists a ¢, such

that
(3.12) (A - D)%, = 9.

If Q¢ D\(( 4- XI)‘, there existe an a such that

1-1 J 1-1 J
8" A6 6% A6
9(9) =¢,(08)a = £ « asre = B v . g5e,
! joo Lt J oo 9+ J
(3.13)
rj+l = al’J+l&, ,j = O,l, seey "‘lo
If (3.12) is to have & solution. then necessarily
d k
(35 - V)%, (0) = a(6)
or
k-l J . 1-1 k+J
AB 6 A6
(3.14) P.(8) = Z 1%, 7+ L v 1 e,
* 320 J+1 !t 3=0 g+l (k+J)!

where the r3+l are n-vectors satisfying some additioml conditions
vhich we proceed to derive.
\

If we define cpsm’(e) to be equal to (d/d6 - x)mcp*(e) with

®, &iven in (3.14), then



k-m-l J 1-1 k+j-m
(=), oy 8° Mo ) re
® (0) = Jfo T+ j+1 37 + Z: rj+l (x+j-m)! ®

m=0’]’.2’ seey k-lo

If ¢, is to satisfy (3.12), then w( B) aust be 1n_xf%f 6(- AI)

fOl‘ m= 0,1’2’ ceny k - l; th&t 15,

0

(B oy = 1 an(e)el® (o)
-r
or,
0 26 k-m-1 9‘3 1-1 6k+,j-4n
Mpl ¥ Toee = f_re‘ an(e)( Jfb Toeg41 37 F Jz T4 TErjm)!)?

m=0,l’2, *e 0y k-ln

Using the definition of the matrices P, above, these last equations can

J
be written as
1=1
P Ve ¥ Pl *ove * By pfy = Jﬁo Pergar1Vyn
Letting
T"=COl (q, seey r{)
d = col (dl, coey d'x)
1-1 1_1
d = ¢

5 7 45 Pevyaral g4l = J=0 +,j-e+2a:,3+1

we have the following result: a necessary and sufficient condition that

)
P € 7{ (A - XI)' implies ¢ € ‘r()(a- ).I)k is that the set of equations
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A - o

have a solution; that is, el 4 =0 for all elements e ¢ nf(Ai ) But,
for any e € 14 (A.E ), there existe a b such that e = B b, 80 that
the desired property holds if and only if bT Bde = 0 for all p-vectors

b, or, if and omnly if,

L-1

T

P Jfo Pyty-s+0%p, 341)®
kK g-1

=W (E &
s=1 J=0

o=bT5§d
B |

M=

T
Be, k-1P1+ge0%y, 34108

for all b. But, from (3.11), this latter relation is true if and caly
Y *
i* (v, 9) =0 forall ¥e¢ //0(4 - XI)k.

This completes the proof of the lemma.

lemma ITI.7. If Y is a basis for J/Z"x(a*) and © is a basis for
?’]fx(d)’ then (Y, ¢) is nonsingular and may be taken as the identity,
Furthermore, if (¥, ®) = I and the square matrices B*, B are defined

by {*v=v8", (Jo=0B then B*=18".

- 2 pr ; —
Proof: Suppose ﬂ"l‘x((.{ h= “f((( - ).I)k, M?IX(K() = 7((//-— ).I)k
where k 18 the least integer for which this 1s true and ¥, ¢ are bases
for Wlfx([{*), 7 x(/{'), respectively. If there exists a constant vector
a such that (¥, &)a = (¥, ¢&) = 0, then, for ¢ = ¢a, we have
Y k

(v, ) =0 forall ve  ,/{ (/{ =-rI). Consequently, from lemma III.6,

7L k
P € ﬁ( .//- u)k. This, there is a @, such that ¢ = (A - 1) P, o

obviously, @, € /(D) and W) =IUTAD®  implies



cpn(d-kl)kcp*--O. Fimally, 0 =¢ = ¢a implies a = 0O since ¢
i8 & basis for WX(’ () and the matrix (¥, ) 1is nonsingular. By a
cbange of basis one can obviously take (¥, ¢) = I. From Lemma III.1

and the definition of (¥, 9), we have

(¥, ({®) =(¥, 9B) = (¥, 8)B = B
T

= (d*!: O) = (!B*) O) = B*T (!: °) = B* )

which campletes the proof of the lemma,
If one does not choose (¥, &) = I, then the matrices B" and

B are related by B = (Y, o)'JB*T (v, o).

Iemma ITI.8., If A 1is in Pg(//) and © 1s a basis for «Vl;'(d), then
the solution x(9) of (3.1) with initial function @ in 751[;(4 ) at zero,

is defined for all values of t in (-», ®») and

x(9)(t) = ¢(0)e™, ~w<t<am,

vhere B 16 the matrix defined by ((® = ¢B. If ¥ 1is a basis for
_‘ﬂ&(d{*), (Y, ®) = I, then the solution y(y¥) of (3.2) with initial
function ¥ 4n ')'7).([[*) 1s defined for all t in (-, =) and

-BT t
’

y(¥)(t) = ¥(0)e ~m<t<m

where BT 1is the mtrix defined by { *Y = ¥B .

The proof of this is obvious.

Let ."’{"x(((), A V:(:(*) be defined as before, have dimension
p, and let &, Y be bases of fff;(-/f}, .]]1/)'(4’*), respectively., From

Lemma III.7, we can choose (Y, ®) = I, the identity. For any
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n -
@ € C([-r, 0], R"), we define a vector b ¢ R* and a function ¢ < ¢([-r,0],]
by the relation

(3.15) =00 +9, b=(Y, Q).

It follows that (¥, ¢) = O and, also, this decomposition is unique.
If we define X by :‘:t(e) =%(t +8), ~r 650, then the

equation (3.1) can be written as

(3.16) %, = ,/{xt, t % 0.

For any solution x =x.(9), ¢ in c([-r, 0], R"), consider the change

of variables

(3.17) x, = dy(t) +z,, 20, y(t)=(y, x).

Since (v, zt) =0 forall t, this implies
§(t) = 5 (¥, x) = (%, dx,) = B(Y, x,) = By(t)

b = &, - 3(6) = Az, - 0my(t) = [ (x, - &y(t) = {2,
(v, zt) = 0.

Consequently, we have the following

Theorem ITI.1l. Buppose the operators ./, [[* are defined by (3.4),
(3.5), respectively, and let .714&(/(), .}.'?'l(d*), A€ Po(), be the
naximl subspaces of C([-r, 0], R®), c([0, r], R") annihilated by powers
of (;,/Z -aI), (A* -I), respectively. If ¢ 1is a basis for

?’Tx(é(’): Y 1is a basis for f/ﬁ‘//')’ (Y, ) = 1, the identity, vhere
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D],Rn) (v, ¢) 1is defined in (3.3), then the change of variables (3.17) applied

to (3.16) ylelds the equivalent system

y(t) = B y(t)

(3.18)
t(t) = 4zt, (v, z,) =0

vhere B 1s a matrix defined by ({® = B, has all of its eigenvalues
equal to )\, and the point spectrum of the operator /( restricted to
the set of @ such that (¥, @) = O does no. contain A.

Now let us consider the perturbed equation

x(t) = £(x,) + G(t, x,),
(3.19) 0
£(p) = / [dn(e)lo(6),

29

where G 18 some function defined for O st 3w, @€ C([-r, 0], R).
If we define the operator u(" a8 in (3.4) and the operator 4%; by the

relation

7, 9(6) = (O , ar%6<0,
(5.20) G(t) Q)I e - 0)

then system (3.19) is equivalent to
(5.21) s, = (x, +¥x,.

Wwith &, ¥ defined as before, (Y, &) = I, the transformation

(3.17) applied to (3.21) ylelds
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¥t = (%, &) = (v, [x,) + (1, Yyx,
- (A%, x,) + (%)

= B(Y, xt) + (!’7:91’.:1;)

- By() + (8,x,),
it = it - (L) = dxt +‘4’t - ®Ry(t) - &(v, 4&)

= Qix, - oy() +7x, - (v, 7x,)
= azt +«,4th - oY, 7%11;)'

But, a simple calculation shows that
2 %
(% <hx.) + ¥ (0)o(t, x,)

and we have the following t <eorem.

Theorem ITI.2. Suppose the operators [(, d* are defined by (3.k4), (3.9),
respectively, and let Jf(x(d), D.’)?‘;(d*), \ € Pa((_"[), be the maximal
subepaces of C([0, rl, R") annihilated by powers of (4 - \I), (4* - M),
respectively, If ® 1is a basis for ?M'T;(d), Y 18 a basis for 377:(4*),
(v, 9) defived in (3.3), then the change of variables (3.17) applied to

system (3.20), (3.21) ylelds the equivalent system

§(t) = By(t) + ¥ (0)6(t, oy(t) +z,),

(3.22) p ; 7
t, = ({2, +ét(¢y(t) tz,) - 0¥ (0)o(t, ey(t) +z.),

(Y! zt) = O
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vhere B 18 the matrix defined by ,/70 = B, bas &1l of its eigenvalues
V)
equal to A, and the point spectrum of the operator C( restricted to the

set of @ such that (Y, §) = 0 does not cantain ).

Remark ITI.l. By a repeated application of the above process, it follows

from Corollary ITI.l tbhat one make a further decomposition of the space
¢([-r, 0], R®) which will yield a system of the form (3.22) where the
real parts of the point spectrum of the operator ({ restricted to the
set of @ such that (Y, §) = O are less than any preassigned value,
B. The matrix B will then have its eigenvalues equal to the elements

of Po(Q) vhich have & real part z B.
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IV. Perturbation of linear systems. In this section, wv= indicate some

applications of the results of the previous section to the system

0
(4.1) x(t) = [ [dan(@)Ix(t + 8) + g(t)
-r

wvhere x 18 an n-vector, 1(6) 18 an n X n matrix whose clements are
of bounded variation on [-r, 0] and g(t) 1is contimuous on (-, =).

Together with system (4.1), we consider the adjoint equation

O o
(¥.2) y(t) = - [dq" (o) ly(t - 9).
-r

lemma IV.l. If \7(1:), tz0, .j(o) =1, 1s a stropgly contimious semi-

group of operators of a Banach space into itself and if for same r > 0,

the spectral radius p = (r) i8 <1 and # 0, then
for any function h mapping (==, w) into ‘@ such that h(t) is almost

periodic, the function
t
(k.3) gt = [ J(t-v)n()

1s almoest periodic in t with the same frequencies as h(t),

nzgﬂ £ KR/B, - 2fr = log p, K comstant, R = aupt“h(t)ll, and is a uni-

formly asymptotically stable solution of

(b.B) t, = A z, + h(t)

=
vhere 4 is the infiniteeimal generstor of ./(t).

Proof: If -2Br = log p, and 7y = g8, then Theorem IT.1 implies
1Tt - ool = Ke'B(t'T)ﬂqaﬂ for a1l t 2T, and some constant K. There-

fore, the integral in (i.3) exists and Hzgll s KR/p. Furthermore,
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J(0) =1 and aJ(t)/at = 4J(t) implies 2z} satisfies (4.k). The
uniform asymptotic stability of zz follows from Theorem II.l. To show

that z¥ 1s almost periodic with the same frequencies as h(t), 1t is

sufficient to show that for every sequence of real numbers ['rm) for

which

n(t +1m) -h(t) -0 a8 m oo, unifermly for t in (-, =),

we have

2¥s -2, 20 88 moe, wiformly for t in (o, @),
n

This is easily verified using Theorem II.l and the lemma 1is proved.

The proof of the next two lemmas are standard and may be found in

(7,12].

lemma IV.2. If C is a constant n x n matrix wvhose eigenvalues have
real parts z 28 >0, and h(t) is an almost periodic n-vector, then

there 18 a unique almost periodic solution of the equation
W= Bw + h(t)

vhich 1s bounded by KR/B for some comstant K and R = sup |h(t)].

lemme IV.3. If B 1s a constant n x n matrix whose eigenvalues may have
zero real parts, h(t) 1s an almost periodic n-vector with a finite

Fourier series, then a necessary and sufficient cundition that the system

¥y = By + h(t)
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have an almost pericdic sclution is that

m

lm % [ ¥,(t)h(t)dt =0, J=1,2 ..., T,
B

Tow
vhere (tl, g2 vr) i8 8 basis for the almost periodic solutions of

the ad joint equation
y=-yB

One could alec state a result similar to Lemma IV.3 for the case
vhen h(t) does not have a finite Fourier series, but it is necessary to
bave an hypothesis which guarantees that the integrals of certain almost
periodic functions are almost periodic. We do not discuss this question

here.

lemmes IV.1 - IV.3 together with Theorem III.1 and Remark III.1
yield in a very natural way extensions to functional-differentiel equations
of the standard results concerning the existence of periodic and almost
periodic solutions of ordimry differential equations which are perturba-
tions of & linear system with constent coefficients. We do not state all
of these results for functiomal-differential equations but merely give some
indications of the manner in which they are obtained. After inspection of
the proofs, one will see that the arguments are essentially the same as

for ordinary differential equations.

Theorem 4.1. If g(t) 1is 2m-periodic and (tl, ceey vk) represents a
basis for the 2m-periodic solutions of the ad joint equation (4.2), then
a necessary and sufficient condition that system (k.1) has a 2wy-periodic

solution is that
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on 1
I ¥ (a(e)as = 0.

If there are no 2w-periodic solutions of the adjoint equation, then
gystem (4.1) has & unique 2r-periodic sclution bounded by KR/B for
some constant K, R = auptlg(t)l and 28 being defined as the largest
mmber such that |x - in| 228, n=0, +1, +2, ..., for all rocts

A of the characteristic equation (2.6).

Proof: lLet 4, d* be the operators defined by (3.4), (3.5). ILet

1
m{x(d*), respectively, for all A in Pa(d) with A #0 (mod 1), Rer 2 O,

and let ¢

0,, ¥, be bases far the linear extensions of the manifolds ’M(x(//)’

Y. be bases for the linear extensions of the manifolds

22 "2
oA, ,).7[‘)'(4*), respectively, for all A in Po(:/) with % =0 (mod 1).
Furthermore, we can choose (Yl, 01) = I, (!2, <b2) =X, wkere (v, @)
is defined in (3.3) (see Lemma III.T7). Comsequently, by Theorem III.2

and Remark JII.l the transformation of variables

X, = ¢1v(t) + Qey(t) tz,

(4.5)
(!l’ xt) = w(t), (!2) xt) = y(t),

applied to (4.1) ylelds the equivalent system

4(t) = Bu(t) + ¥, (0)g(t)
(4.6) §(t) = By(t) + ¥, (0)g(t)

t(t) = dz, + 4, - 0,3 (0)e(t) - o1, (0)a(t),

((!l’YE)’zt) =0,
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vhere ri(s) =0 for -r3s6<0, =g(t) for ¢ =0, B,, B, are
the matrices defined by o, = 0B, 4 ¢, = 9,B,, respectively, all
eigenvalues of B, are #0 (mod 1), all eigenvalues of B, are

=0 (mod 1) and all elements in the point spectrum of the restriction
of /{ to the set of a1l § such tat ((Y, ), §) =0 have megative
real parts. System (4.1) will bave a 2r-periodic solution if and only
if there i8 a 2y-periodic solution w(t), y(t), z, of (4.6). After
observiug that the basis *1 A O0o: *k of the 2w-periodic solutions of
the adjoint equation (4.2) are of the form Y vJ(t) vhere the vJ(t)
are 2r-periodic solutions of the equation ¥ = - B Tv, one can apply

Ileoamns IV.1-IV.3 to complete the proof of Theorem IV.1.

In the same manner, one proves

Theorem IV.2. If g(t) 1s almost periodic in t with a finite Fourier

series and (¥, ..., ¥,) represents a basis for the almost periodic
solutions of the adjoint equation (4.2), then & necessary and sufficient
condition that system (4.1) has an almost periodic solution is that

T
L[ ¥, (te(t)at =0, J = 1L,2..0k
T -« T 0

If there 18 no almost periodic solution of the adjoint equation, then there
is a unique almost periodic solution of (4.1) and it is bounded by KR/s
for some constamt K, R = suptlg(t) [, amd 28 defined as the largest number
such that IRe A 2 28 for all roots of A of the characteristic equation
(2.6).

No ronsider the nonlinear equation

0

(4.7) x(t) = [ [an(e)Ix(t + 6) + G(t, x,, €)

-r



where n(8) 1s the same matrix as before, € 18 a parameter, q(t, 9, €)
18 continuous in t, @, € for -w <t <w, ¢e c([-r, 0], R),

ol s B, H>0, Ose€ s €, and is Lipechitzian in @. Purthermore,
there exists a function 1(e, p), continuous for 0 s € = €, 0%p=H,

such that n(0, 0) = 0 and

la(t, @, €) - G(t, ¥, €)| s n(c, p)llo - ¥ll, a(t, 0, 0) = 0,
for all @, ¥ € C([-r, 0], Rn)) "9"; "*" $p,0=¢s £ <t <w,

If the characteristic equation (2.6) of %x(t) = fo [aq(6) Ix(t + 9)
has no roots =0 (mod 1) and G is 2wW-periodic in t, -rthen one can
prove that there i1s a unique 2w-periodic solution of (4.7) in a neighbor-
hood of the origin and this solution &pproaches zero as € —» 0. If the
roots of this characteristic equation bave nonzerc real parts and
G(t, 9, €) 18 almost periodic in t uniformly with respect to ¢ for
each fixed e, then there is a unique almost periodic solution of (k.T)
in a neighborhood of the origin and this solution approaches z2ro as
€ -+ 0. The proofs may be supplied exactly as in [ 7; Chapters 5, 12] %y
making use of the change of variables as in Theorem IV... These results
bhave been obtained previously in a slightly less general foxm (see, for
example, Krasovskii [10], Shimanov [16]).

What happens in the case when some of the roots of the characteristic
equation (2,6) are = 0 (mod 1) and G is 2y-periodic in t? In this

case, one can extend the method of casting out secular terms to derive

the determining equations (bifurcation equations) associated with (4.7).



This procedure has already been indicated by Shimanov [ ], but we
repeat it here for comp.eteness. For simplicity in notation, we restrict

ourselves to the following case: 1if

0
A(A) = I - [ [an(e)leM®
-y

and ) 1is the root of multiplicity u of det A(A) = G which is
= 0 (mod 1), then there are u linearly independent solutions of
A(\)b = 0. Purthermore, for simplicity only, suppose G = €H.

By the change of variables (4.5), system (4.7) can be written as

w(t) = Blw(t) +€ !ir(o)cl,
(4.8) §(t) = Byy(t) + € ¥, (0)ay,
b, = C?zt +tep, -¢€ olyir(o)al -€ oeyér(o)cl,

((!l’ !Q)Zt) = O,

where
G, = 6,(t, w(t), ¥(t), z;) = €B(t, &,w(t) + & y(t) +z),
‘\'!“"-9) C;/’lt(e) = 0 » -r®6<0,
G, , =0,
Bt

no eigenvalue of B 18 =0 (mod 1), e is 2r-periodic and all
elements in the point spectrum of the restriction of 4 to the set of

all ¢ such that ((¥;, ¥,), ®) =0 bave negative real parte.
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t
If we let y(t) = e32 v(t), system (4.8) can be written as

w(t) Blw(t) + c!lT(O)Gl,

t
(k.10) tHt) = ee % !ET(O)GI’

t(t) = Ao, + e, - coxT0)c, - co,x.7(0)c,,
((!1) !2)’ zt) =0,

-B,t
vhere G, = Gl(t, w(t), e © v(t), zt). One can now use Lemm IV.l to

]
repeat all of the arguments in (7, Chapter 6] to obtain a periodic func-
tion (w*(t), v*(t), z}#) with a vector a, the mean value of v*, arbi-
trary, and a set of equations (the determining equations) involving the
arbitrary vector a which have the property that (w#(t), v*(t), zg)
will be a periodic solution of {4.10) is and only if the vector a
saticfies t.e¢ determining equations. We do not discuss this question
further since all details are easlly supplied. This procedure extends
the method of Cesari-Hale-Gambill to functional-differential equations
of the above type.

In some problems, it is more convenient to introduce pclar coor-
dinates for the vector y in (4.8). In the following, we may allow G
in (4.2) to be almost periodic in t and need only assume that the

matrix 32 has the form

B2 = diag (Aly Q pog Ak)

(4.11) 0 1\
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vhere each o, is positive. If y = (yl, ceey yak), the trensforma-
ticn

Y251 = Py *in 8y
(k.12) Yoy = Py cOB 8y J=1,2, ..., k,

Py = (pl’ ey pk)) 8 = (91.’ soey ek)
applied to (4.8) yields a set of equations of the form

8(t) = d + ¢ 8(t, 8(t), p(t), w(t), z,,¢)

p(t) = € R(t, 6(t), p(t), w(t), Zys €)
(&.13) (t) = Bl"(t) + e W(t, o(t), p(t), w(t), Zys €)

£, = 4zt + ¢ 2(t, 0(t), p(t), w(t), z,, €)
where z, 1s required to satisfy ((¥,, Y,), z) =0, ad d = (o3, ..., o)
Equations (4.13) are of the same type that have been considered in [ 3,7 ]
for ordinary differential equations, It is a simple matter to extend the
method of averaging in [ 3,7 ] to systems of the form (&.13) and to prove
the existence of integral manifolds which are generated by equilibrium
points of the averaged equations. We do not go in detail on these general
questions, since these extensions will be clear to the reader who is

familiar with the results for ordimary differential equations.
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